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1. Introduction

An experimenter is generally interested in both the stand and yield
of his crops. When observations are made on both characteristics,
the question of how such data are to be analyzed a.rises.

For sugar beet data, yield may be regarded as the product of the
number or stand per plot and average weight per beet per plot. Thus,
an analysis of yield is a form of joint analysis of the characters number
and average weight; this analysis may be the most pertinent in terms
of answering the questions posed in the planning of the experiment.
On the other hand, an analysis of yield adjusted for stand, i.e., an
analysis of covariance with stand as the covariate, eliminates the effect
on yield of variations in stand. This may be desirable if variation in
stand is not a result of the treatments or if average weight is not affected
by competition among plants within the plot. If differences among
stand are expected to be attributable to treatments, the analysis of
variance of yield may be what is desired; an analysis of covariance of
yield adjusted for covariance on stand may eliminate, at least partially,
true treatment differences.

The experimenter may be interested in an analysis of variance of
stand itself. Finally, the experimenter may wish to consider analyses
of variance of both yield and stand. If inferences are to be made from
a joint consideration of the characters yield and stand, some rules of
procedure are required.. For example, in a more general case we might
agree to declare the difference between the effects of two treatments
to be significant if: (i) differences between corresponding treatment
means for at least one character are significant, (ii) differences between
corresponding treatment means for both characters are significant, or
(iii) differences between the sums or some other combination of the
means of stand and yield for the two treatments are significant. Other
rules of procedure are possible.
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Table I

Number of beets, Xj, yield, Xg, and average weight per beet, X3, together with ranks of treatment means
for Snedecor's sugar beet example

Trt.
Fertilizer

Char
Block

Total Mean Rank
No. acter*

1 2 3 4 5 6

183 176 291 254 225 249 1378 229^7 2^5

1 None Xi 2-45 2-25 4^38 4-35 3-42 3^27 20^12 3^35 1

Xz •0134 •0128 •0151 •0171 -0152 •0131 •0867 • 0144 1

356 300 301 271 288 258 1774 295^7 4

2 P, super- X. 6-71 5^44 4^92 5-23 6-74 4-74 33•^8 5-63 4

pliosphate •0188 •0181 •0163 •0193 •0234 •0184 •1143 •0190 4

224 258 244 217 192 236 1371 228 • 5 1

3 K, muriate 3^22 4-14 2^32 4^42 3-28 4^00 21^38 3^56 3

of potash •0144 •0160' • ^0095 •0204 •0171 •0169 •0943 •0157 3

329 283 308 326 318 318 1882 313^7 5

4 P + K .. ^2 6-34 5^44 5-22 8^00 6^96 0^96 38^92 6^49 5

•0193 •0192 •0169 •0245 •0219 •0219 •1237 •0206 6

P+N (N, 371 354 352 331 290 410 2108 • 351•s : 6

5 sodium 6^48 7-11 5-88 7-54 6-61 8^86 42 •48 7^08 6

nitrate) •0175 •0201 •0167 • 0228 •0228 •0216 •1215 •0202 5

230 221 237 193 247 250 1378 229^7 2^5

6 K + N .. 3^70 3^24 2-82 2^15 5^19 4^13 21^23 3^54 2

^3 •0161 •0147 •0119 •0111 •0210 •0165 •0913 •0152 2

322 367 400 333 314 385 2121 353^5 7

7 P + K + N .. ^2 6^10 7^68 7^37 7^83 7^75 7^39 44^12 7^35 7

•0189 •0209 •0184 •0235 •0247 •0192 •1256 •0209 7

2015 1959 2133 1925 1874 2106 12012 286-0

Total .. ^2 35^00 35-30 32^91 39-52 39 •OS 39 •35 222^03 5^29

^3 •1184 •1218 •1048 •1387 •1461 •1276 •7574 •0180

t = 152,158-00 ; = U2-4022 ; = 0-00055969 ; Sx:^xn = 4,163.69 ; •-= 5-3445

* Weight; X2, and average weight, X^, have been multiplied by a factor converting them to tons per acre. This will not affect
conclusions drawn from any of the analj'ses, discriminant functions, or other techniques used here.

t Lower case letters are used when the effect of the mean has been eliminated.
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In experiments where it is desired to make statements involving
two or more characters jointly, the calculation of a correct probability
usually poses difficult problems. For the case where neither stand
nor yield is to be relegated to the role of a covariate, a bivariate analysis
is appropriate whatever the degree of relation between the variables.
By a bivariate analysis is meant one in which a set of paired means,
a pair consisting of a mean for each character for the given treatment,
is tested to determine whether the spread in a circular or elliptical area
can be attributed to chance.

The data used in this paper were obtained from Section 12.7.,
Statistical Methods, by George W. Snedecor. They are presented here
in Table I with the addition of average weight per beet, Zg, and of ranks.
Snedecor gives analyses of variance for stand and yield and an analysis
of covariance with stand as the covariate.

2. Analyses of Variance

Univariate analyses of the data are given in Table 11. The treat
ment mean square is highly significant in all cases. The discriminating

Table II

Analyses of variance of number of beets, Xj, yield, Xg, and
average weight per beet, Xg

Source of variation d.f.

Mean squares

^2 -S's

Blocks 5 1,495 1-26 0-000031211

Treatments 19,337t 18-81t 0-000047171

Error

O
CO

II

956 0-774 0-00000402

Discriminating ability • • 80-2% 82-9% 68-4%

t Observed F is greater than tabulated F at the 1% level.

ability is measured as the ratio of treatment sum of squares to (treat
ment + error) sum of squares, i.e., it is the percentage of a total sum
of squares attributable to a variable of classification, in this case treat
ment eflfects. Also, it is the square of a correlation coefficient. The
squared correlation coefficient and the i^-value are dilferent measures
of the ability to detect differences among treatment means. It can be
shown that

Treatment SS ft F
Treatment SS + Error SS ~ f^ + fF
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SO that the one to one relationship between the two quantities is obvious.
The squared correlation coefficient is sometimes more useful than F
in comparing discrirninating abilities.

The biologist should not be misled into using the variable which
gives the best discrimination if it is not the most pertinent to the ques
tions which led to the experiment. In particular, the use of a ratio
like X3 is often subject to criticism on valid grounds. For example,
real differences due to treatments may be hidden in a ratio when there
is a linear regression of yield on stand which does not pass through
the origin; the same thing can happen with regression through the
origin if treatments affect stand but not the ratio; at the same time,
non-additivity of effects and heterogeneity of variance may result.
Equally misleading conclusions may be drawn as the result of other
situations.

Once the significance of differences among treatment means has
been established, the location of significant differences, i.e., discrimina
tion among treatment means, becomes important and a number of
techniques are available. While the non-orthogonal comparisons given
for these data by Snedecor in Example 15.12 probably form the most
satisfactory set, there are now valid methods of comparison for cases
where no such relations exist among the treatments. We shall apply
one of these methods.

Let us apply Tukey's hsd (honestly significant difference) procedure
to yield, X^. The procedure is outlined by Federer (1955) and consists
of: (i) allotting treatment means to biological or other natural groups
according to treatment. (We proceed as though there were a single
natural group though this is not the case.) (ii) Choosing a
significance level, say 5%. (iii) Computing and applying an hsd.
For this, we require the standard deviation of a mean, i.e.,
Ss --= VO"774/6 = -36, and a factor from a table by Pearson and
Hartley (1954). The factor is =4-46 for 7 treatments and 30d.f. in
error. The

hsd = = 4-46 (-36) = 1-61

is applicable to the testing of linear combinations of treatment means
where the sum of the coefficients is zero. The error rate is on a per-
experiment basis, i.e., when the null hypothesis is true, on the average
one experiment out of 20 will contain at least one comparison which
will be declared significant.

By this scheme, each of Xi, Xg and is declared significantly differ
ent from each of Xa, x^, x^ and x^ since the smallest difference, x„
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-jC3 = 5-63 - 3-56 = 2-07, is greater than the hsd. Also, is
declared significantly different from x, since x,—Xa = 1"72. No other
difference between two means is declared significant.

3. Analysis of Covariance

When the experimenter considers the analysis of covariance with
stand as the covariate to be appropriate, he tests differences among
treatment means after they have been adjusted to a common stand.
This method is appropriate when differences among treatment means
for stand are due to random sampling. However, in cases where non-
random differences exist in the covariate due to treatment or environ

mental effects, covariance may not be applicable.
Table III contains pertinent sums of squares from the analyses of

covariance for stand and yield and stand and average weight per beet.

Table III

Analyses of covariance

Source of variation H f

Sums of squares adjusted for regression
of X-y on

^2 ^3

Error

Treatment+Error

29

35

6-9969

9-4655

•00010256 .

-00013684

Adjusted treatment means

Discriminating ability ..

6 2-4686

26-1%

-00003428

25-1%

Discriminating ability is as previously defined. Only about one quarter
of the adjusted (treatment + error) sum of squares can now be attri
buted to treatment effects. Loss of ability to discriminate was to be
expected since there is a marked correlation between the paired treat
ment means with Zg and Zj with Zg. This is seen from ranks alone.
Differences among treatment means are no longer significant, i^-values
being 1-71 and 1-61 respectively.

If the analysis of covariance had indicated significant differences
among adjusted treatment means, discrimination would be especially
time-consuming because of the significant differences among means for
the covariate. When no such differences are present, methods such as
that due to Tukey as illustrated in Section 2 or that due to Duncan as
illustrated in Section 5 can be applied with s^ calculated as

1 + Ej
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where is the error variance adjusted for regression, and
are respectively the treatment mean square and the error sum of squares
for the covariate and n is the number of observations per mean [see
Finney (1946)].

4. Bivariate Analysis of Variance

When the experimenter wishes to use the information in both
variables without relegating one to the position of a covariate and also
to take cognizance of the degree of relationship between the variables,
he may use a bivariate analysis of variance.

To grasp the ideas underlying a bivariate analysis, consider Fig. 1.
This is a plot of the paired treatment means (Xi, Xj), shown by dots,
and two additional points marked x to be used for illustration. If
all points were to lie more or less "closely" together in an ellipse or
circle, intuition would suggest no differences among the paired treat
ment means. Here the seven points representing the observed pairs
of ineans appear to be extended in a manner strongly indicative of real
differences. Further, it would appear that these points lie reasonably
"close" to a line. This suggests the possibility that some sort of a
standard deviation appropriate to the line can be used to discriminate
among such paired treatment means. If the points had shown "too
much" scatter from the line as when the two extra points are considered
as part of the data, then the line itself and a. single standard deviation
appropriate to it would seem inadequate for the best discrimination.

For a bivariate analysis, the necessary numerical values are the
sums of squares and cross-products of the analysis of covariance.

The various mean products of Table IV are obtained by dividing
sums of products by appropriate degrees of freedom. The multi-
variance components in the last column are derived in the usual manner,
i.e., a single position within a matrix is considered at a time. For
example, 77-0015 = (1494-5140 - 955-5033)/7, and 96-1558
= i (599-6750 — 22-7400), where 7 and 6 are the numbers of observa
tions in the block and treatment totals. Multivariance components
are useful in much the same manner as are ordinary variance components.

To test the significance of a source of variation in a bivariate analy
sis, it is necessary to compute the statistic U, defined as

•E'li £12

E21 £'22

XX

U =

•^11 + ^11 •£'12 + ^12

•E'21 + ^21 -E'22 + T22



Source of variation d.f.

Total 4i

Replicate or block

Treatment /i = 6.

Table IV

Bivariate analysis of variance of Xi and Xg

Sum of products

'152,158-00

4,163-69(
7,472-57

116-56

•116,020-33

3,598-05

28,665-10

682-20"

( 7,472-e
-Ilfi.f

c

(

4,163-69 V

142-4022>

-116-56

6-3134

3,598-05

112-8562

682-20 \

23-2326/

Mean product

1,494-5140

-23-3120

/'19,336-7217

599-6750

955-5033

-7400

/ l,494-£

V -23-E

c
( 955-E

22-';

Multivariance components

77-0015

5789

•3.063-5364,

96-1558

/ 77-(

V -6-f

(

-6-5789

0-0698

96-1558\

3-0058/

;)

.p>.

o
d

§

o

Error /•c=30

-23-3120\

1-2627^

599-6750

18-8094>

22-7400>

0-7744/

s
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o

>
z

s
Q

§
>
O

2
o
G

^21

U =

5,1 + T,11

E^l. + ^21

=•12

^12 + ^12

J^22 + ^22

28,665.10

682-20

682-20

23-23

144,685-43 4,280-25

4,280-25 136-09

where is error sum of products and is treatment sum of products.
^ 1 —^/U (2 (/a —1)\ ^ -6174 =7-80 with 12 and 58 degrees offreedom.

Wi -3826 (12) 4-5912 .

1̂,369,700-1062
200,4^0 i

>
r

n
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^11-^22 •^12

(^11 + Til) (^22 + W - {E^2 +7^2)'

where and Tn are error and treatment sums pf squares for
and Tga are similar sums of squares for X^,, and E^^ = £'21 and Tig = Tgi
are error and treatment sums of products of X-^ and X2.

The numerical value of the criterion U lies between zero and one,
with values near one supporting the null hypothesis and values near
zero indicating significant departures. The null hypothesis states that
there are no differences within the set of pairs of means, i.e., that sampl
ing is from a single bivariate population. The quantity -s/U has been
shown by Wilks (1935, 1946) to have a beta distribution with para
meters p and q as used by Pearson (1932) equal to (residual d.f. —1)
and variety d.f. respectively. The square-root is related to Snedecor's
F and follows:—

F (n, m)
1 -\/U

Vu-
m

n

with n = 2 (variety d.f.) = 12 and m = 2 (residual d.f - 1)= 58 as
d.f. to be used in entering the i^-table. There is little doubt of the
existence of real differences among the seven pairs of treatment means.

5. Further Tests in a Bivariate Analysis, the Discriminant
Function

As with a significant F, the problem of discrimination among these
unlike pairs now arises. To obtain further information on the nature
of the differences, consider a determinantal equation in U, namely

(^11 + Tn) C/ - (£12 + Tia) V - E^^

(•^21 ~1~ ^21) U £21 (-2^22 ~t" ^22) U —£*22

For our data on (X^, Zg), we have

144,685-43 U ~ 28,665-10 4,280-25 U - 682-20

4,280-25 C/- 682-20 136-09 t/- 23-23

or

= 0.

= 0,

1,369,700-1062 - 1,422,102,-8979 C/-f 200,493-4330 ^ 0.

The roots are i7i = -87001 and 1/2= -16825 mth U = . .

= (-87001) (-16825) =-1464. , .
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While the exact distributions of these roots are obtainable, a chi- •
square approximation seems reasonably useful especially where sig
nificance is sopronounced, and ismoreeasily obtained. .This approxima
tion is also available, for U. The approximations are:

for U-.

=- 2-30259 (30 +6- lo&o (-14637761)

= 77-82.

for U^\

'̂{{p +fi - 1) df) =- (/« +/«

=- 2-30259 (30+6- logio (-16825)

= 72-18 with 7 fi?./.

and for Ui:

XHiP +ft - 3) df} =- (/. +/.-•^{^\)logeUi

=- 2-30259 (30+6- logio (-87001)

= 5-64 with 5 d.f.

where//= treatment degrees offreedom,/, = error degrees of freedom,
and p = number of characteristics. These results are summarized in
Table V.

The single significant root is quite helpful in that it tells us that a
single linear function may be used to discriminate among paired treat
ment means. In other words, some line as in Fig. 1 together with an
appropriate standard deviation as a measuring stick, can adequately
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Table V

Roots of a determimntal equation

37

Root d.f. Prob. of greater =

i/i = •8700 ?> + /(-3=5 5^64 Approx. = '46 •1300

172 = •1682 72-18 < -0001 •8318

U = •1464 77^82 <•0001

The chi-squares for the two roots, [/j and U^, add to the chi-square value for U.

locate significant differences among the set of seven points. Notice
the pronounced linear relation between treatment means for stand and
yield. If both roots are significant, a second discriminant function
is required and the problems of interpretation are increased. The
alternative would be some bivariate criterion.

The values U-^ and U^, contain still more inforrhation. They are
associated with discriminant functions of which only one, that for U^,
appears to be useful. These two functions are uncorrelated. The
complements of the [/-values 1 - i7i and 1 - U^, are the squares of
so-called canonical correlations, measures of the dependence of the
data, after removal of replicate effects, on variety effects. Thus
= 1 —C/g = -8318 says that 83% of the (treatments + error) sum of

squares can be accounted for by treatments if the appropriate linear
combination of stand and yield is used; and no .other single linear
function can be found which will do as well. We have already seen
in Table II that yield alone does virtually as well, the difference being
trivial.

In order to find the discriminant function implied by we solve
the equations:

~ (i'li + 7\i) —7\i] a^ + [(1 —C/g) (-£'12 + 7i2) — a^ = 0
and

[(1— t/2) (£'12 + 7^21) —T'ai] «! + [(1 —C/2) (£22 + —7^22] ^2 = 0,
or

4,321 -77 Gi - 37-95 = 0 and - 37-95 a-^ -f -336 a^ = 0,

for. and a^. The equations give a^ja^ = 37-95/-336 = 113 or
<72 = 113%. The discriminant function is, then, Xj^ + 113X..
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Consider again the statement that 83% of the (treatments + error)
sum of squares of the variable + 113 X„ called a canonical variable,
can be attributed to treatments. An analysis of variance of this vari
able can be found directly from the coefficients 1and 113 and the original
bivariate analysis by evaluating two expressions, of which the one
for error SS is;

n 1131/"^ '̂̂ ^^"^° U ^ =479,499-3694.^ V 682-20 23-2326All3y'
For treatments, the corresponding sum of squares is 2,370,240-4478.
The ratio of treatment to (treatment + residual) sum of squares is
•8318. _ . _

To actually discriminate among treatments for the canonical vari
able, we require new treatment means as well as the new error term.
These are:

Treatment:-.None P K P + K P + N K+ NP + K+ N
Number; 1 2 3 4 5 6 7
Mean: 608-2 931-9 630-8 1047-1 1151-3 629-7 1184-0
For example, 608-2 = 229-7 + 113 (3-35). To discriminate, an

is required. The error sum of squares has already been calculated.
Had the usual discriminant function analysis been applied to the data
and had the results been presented in analysis of variance form, treat-

•ments would have 7 d.f. and error 29 d.f. The loss ofa d.f. from error
can be rationalized on the basis that the number 113 was estimated
,from the data. Let us use 30 - 1 = 29 d.f. for our error mean square.
• Then,

_ /479,499-3694 ^
29x6

We now use Duncan's (1955) New Multiple Range Test to^ dis
criminate among the treatment means. This test, like Tukey's in
Section 2, is not the most appropriate procedure for such a set of treat
ments but is used here for illustrative purposes. First, rank the treat
ment means. The means, with treatment numbers in parentheses,
are given in Table VI.

Table VI

Ranked treatment means mth corresponding treatment numbers
flY 629-7 (6) 630-8 (3) 931-9 (2) 1047^4)1151-3(5)1184-0(7)

The spacing corresponds roughly to the separation

Secondly, enter Duncan's (1955) table of Significant Studentized
Ranges for "a 5% level test at row ih = 29 d.f. and obtain significant
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ranges from columns = 3, 4, 5, 6, 7 and 8 but refer to them as sizes
2, 3 , 7. This is a temporary expedient suggested by the authors;
in the analysis of va/iance of a single varia.ble or of a linear function
such as Xi -\- aZ, with the coefficient a not supplied by the data, tabu
lated p-values of 2, 3 , 7 would be used. The expedient is sug
gested since an extra d:f. appears in treatment sum of squares in the
analysis of variance presentation referred to. The values are given
in Table VII. The values of range(.?j) are called shortest significant
ranges.

Table VII

Significant Studentized ranges and shortest significant ranges

Actual No. of means 2 3 4 5 6 7

Tabulated No. of means 3 4 5 6 7 8

Significant ranges 3-04 3-12 3-20 3-25 3-29 3-32

Range 159-6 163-8 168-0 170-6 172-7 174-3

Differences are tested in the order largest minus smallest, largest
minus second smallest, largest minus second largest, second largest
minus smallest, ...., second smallest minus smallest. Here, the order
is (7) - (1), (7) - (6), (7) - (3), (7) - (2), (7) - (4), (7) - (5), (5)
- (1), (5) - (6), (5) - (3), (5) - (2), (5) - (4), (4) - (1), (4) - (6),
(4J - (3), (4) - (2), (2) - (1), (2) - (6), (2) - (3), (3) - (1), (3) - (6)
and (6) — (1).

A difference is significant only if it exceeds the corresponding least
sigmficant range except that "no difference between two means can be
declared significant if they are between two other means with a non
significant range." "Between" may be interpreted as including one
of the means in the non-significant range. As soon as a non-signiiicant
range is found, it is convenient to underline these means and those
between. The procedure is indicated in Table VI. Tables VI and VII
may be combined to give a single worksheet.

Means (4), (5) and (7) are underlined in Table VI because (7) ~ (4)
= 137-77 is smaller than 163-8, the least significant range for three
means. Any two means not underlined with the same line are declared
significantly different.

Duncan's procedure has an error rate that is on a per-single-t/./.
basis. It is thus seen to be a different procedure from Tukey's. By
Duncan's method, we find significantly different from x^. This was
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not significant using alone and Tukey's procedure. Detection of
this difference is likely due to the difference in the two authors' methods
of setting error rates rather than to the introduction of into the dis
criminant function.

6. An Alternative Discriminant Function

Smith (1936-37) first described the application of a discriminant
function or selection index for plant selection. He pointed out that
in selecting for quantitative characters such as yield, the differences
due to genotype are masked by environmental effects. Plant breeders
attempt to select breeding material on the basis of observable character
istics which they believe are associated with the desired character since
the actual worth of each of the observable characteristics is usually
unknown. Smith suggested that the discriminant function approach
be used to best indicate the "genetic value" of a line.

It may be assumed that the true genotype of the plant is measured
by

where the are assigned values representing relative values of the
•observed characters, X^, whose true values are

This function cannot be evaluated directly because only the pheno-
'typic performance and not the genotypic performance is observed.
Let the phenotypic value be represented by the equation

F = 2b,X,.

The problem is to find values of such that the function Ywill detect
best those lines which have the greatest genotypic value 6; that is,
the bi are to besuch that the regression of 7 on e will be maximum. If
the line variances and covariances are denoted by/j,-, the error variances
and covariances by and if gij =fij —% represents a multiple of
the multivariance component which is an estimate of the component
due to genotype, maximization of the regression of F on 6 results in
the following equations;—

bifii -1- ^2/12 +••••+ bpfip =

where

bifip "1" ^2/2^ bpfjip -Ap,

Ai = Ciffii "i" <^25^12 ~1~ • •• ~t"

Ap = Cigip + C2g2p + • •• + ^pSpp-
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The Aj are computed from the data after the Cj have been decided upon.
Goulden (1952) suggests that the be set equal to the reciprocal of
some multiple of the mean for a given character.

Though not developed for this purpose, the above procedure may
be used directly on the sugar beet data after the relative worth of the
two characters, stand and yield per plot, is decided upon. Since stand
is such an important part of yield in sugar beets, it might be advisable
to give the variables equal coefficients, that is set q = 1 = Cg. Any
values that appear reasonable to the experimenter may be used. From
Table IV, ihs p = 2 equations involving and are

19.336-7217^1 + 599-6750&2 = 3,063-5364^ +,96-1558c2
= 3,159^6922.

599-67506i+ 18-8094Z)2 = 96-1558ci+ 3-0058c2
= 99-1616.

Solution of these equations gives

b^ = - 0-008000436 and = 5-526984463,

or in relative values

= - 0-008000436^/955-5035 = - 0-2473 and

hVE^Jfe = 5-526984463 a/0-7744 ^ 4-8637.

Thus, yield is about 20 times more important than stand in discriminating
among the 7 treatments. The discriminant function is

Y = -Xi + 690-8 Za,

where the coefficients are divided by 0 -008000436 to give Xi a coefficient
of — 1, a more convenient form for the discriminant function.

The ability of this function to discriminate among transformed
treatment means is found as in Section 5. We need treatment and

(treatment + error) sums of squares as if an analysis of variance of
values of — + 690 •BZa has been made. The treatment sum of
squares is 49,000,456-74 (see Section 5 for computing method). The
(treatment + error) sum of squares is 61,834,415-87. The ratio
of treatment to (treatment + error) sum of squares, i.e., the proportion
of this total sum of squares attributable to or explained by treatment
effects, is = -7924.

This figure of about 79% had to be less than the corresponding
figure of about 83% for the previous discriminant function for that
was the maximum possible value for a linear function. However,
the figures are about the same on a practical basis.
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7. The Bivariate Analysis For and

The bivariate analysis of average weight per beet and stand per
plot is given in Table VIII. Again only one of the roots is significant
and a single discriminant function is adequate. The discriminant
function implicit in = •1774 is X^ + 7820X3. The discriminating
ability is = 1 - -1774 = -8226, i.e., about 82% of the total sum
ofsquares for treatments and error can be explained by treatment effects
when the variable is X^ + l^lOX^. No other linear function can do
better. In this case introduction of shows a marked improvement
over use of X3 alone where discriminating ability was about 64%.

If H. F. Smith's (1936-37) discriminant function is calculated,
the two equations involving and for q = 1 = Cg are:

19,336-761 + •9lS6b^ = 3,063-5301 + •1486c2 = 3,063-6786 and

•9156Z7i + •00004717^2 = -1486^1 + -000007190,=-14860719,

and the solution for the b'& gives:

b^ = -114514341 and b.^ = 927-629246,

or in relative values

h = -114514341 V955^ = 3-5398 and

bs VEJL = 927 -629246 -x/-00000402 = 1-8599. .
The discriminant function is

Y = Xi + 8IOIZ3.

In the analysis, stand per plot is about twice as important as
average weight per beet in discriminating among the 7 treatment means.
Here, the discriminating ability is virtually the same since the function
Xi + 1820X^ is so little different.

8. Concluding Remartcs

The bivariate analysis is easily expanded to a multivariate analysis
which can deal with more than two characters. Acharacter, e.g., yield,
measured in several years or at several locations may be treated as
several characters and a multivariate analysis of the resulting data
may be performed. Tukey (1949) gives an example for an annual
crop where the variables are yield in each of two years. Steel (1955)
gives an example for a perennial crop where thesame plots are harvested
in successive years. These are alternatives to analyses of variance
with years as sources of variation.



Source of variation d.f.

Total 41

Replicate or block

Treatment .. /i = 6

Table VIII

Bivariate analysis of variance for Xi and X3

Sum of products

152,158

5-3445(
5-3445 \

0-00055969/

7,473

-0-8685

116,020

5:4937

28,665

0-7193

-0-8685 N

0-00015605/

5-4937

0-00028303

Mean product

/ 1,494-e

V -0-]

c

(

1,494-6 -0-1737

0-1737 0-00003121.

19,336-7

0-9156 0-00004717>

955-5 0-0240 \

0-9156 \

7/

Mukivariance components

77-01

0-0282

3,063-53

0-1486

/ 77-C

V -0-(

(

-0-0282 \

0-00000388/

0-1486 \

0-00000719/

Error /•a=30
0-7193 \

0-00012061/ 0-0240 0-00000402

U = 0-14848482 ; F(12, 58) = 7-71.
19-79928440 W- 20-08277665 U+ 2-93989316 = 0 ; = -1774; = -8369.

For V^-. = 70-04 with 1d.f. and for U^,: x® = 7-21 with 5«/./.

I
I

Z

5

s
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The multivariate analysis of data where the diflferent variables are
the same characteristic, unlike the analysis of variance, requires no
assumption about homogeneity of error variance from year to year
or location to location. When more than one root of the Z7-equation
is significant, more than one discriminant function is necessary; they
aie calculated in the same manner as here. A test of significance for
the comparison of the discriminant function determined by the data
and any proposed discriminant function is given by Fisher (1940).

The procedures of Duncan and Tukey do not require the calcula
tion of an initial F-value and are more widely applicable than indicated
here [see Duncan (1955) and Federer (1955)]. They can be used for
tests involving linear functions of the observations. These procedures
together with others are discussed in Chapter II of Federer's Experi
mental Design where necessary tables are available. Duncan's tables
are also available in his paper (1955).

9. Summary

The analysis of variance, of covariance and a bivariate analysis
are presented for an example in Chapter 12 of Snedecor's Statistical
Methods. Methods and suggestions for testing diflferences in' a set of
means are given. In particular, the discriminant function for which
the ratio of treatment sum of squares to (treatment + error) sum of
squares is a maximum is calculated. The coefficients of the variables
in this discriminant function are obtained from the data. A discriminant
function with coefficients based on information outside the experiment
is also calculated.

Tukey's hsd test and Duncan's Multiple Range Test are used to
illustrate methods of testing all possible differences between pairs of
treatment means, pairs of means adjusted for a covariate, and pairs
of mean values of a discriminant function.
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